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The main objective of the study is to investigate the ef-

fects of a higher magnetic field on the target. The Neuffer

front end consists of

q Target and capture section

q Bunching and rf phase rotation sections

q cooling lattice
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Figure 1: Layout of the Front-End.

Different Components of the Front-End

j Capture Section: Hg jet target; 2-3 ns 8 GeV proton

(24 GeV). Solenoidal channel: Length ≈ 12 m, 30
(20) ≥ Bz ≥ 2.6 (1.75) T

j Decay Drift: Length ≈ 100 m, Bz ≈ 2.6 (1.75) T

j Adiabatic Bunching: 27 cavities with 13 different

⇓ frequencies and changing ⇑ gradients. Length ≈

50 m, Bz = 1.75 T

* 333 ≤ f ≤ 234 MHz 5 ≤ Grad. ≤

10 MV/m

j Phase Rotator: 72 cavities with 15 different⇓ frequen-

cies; constant gradient. Length ≈ 50 m, Bz = 1.75 T

* 232 ≤ f ≤ 201 MHz Grad = 12.5 MV/m

j Cooling: Solenoidal FOFO lattice; Length ≈ 50 m,
Bz = ±2.8 T; Grad. = 15.25 MV/m, f =
201.25 MHz

Bunching and Phase Rotation Region

In the scheme the correlated beam is first adiabatically

bunched using a series of rf cavities with decreasing fre-

quencies and increasing gradients. The beam is then phase

rotated with a second string of rf cavities with decreasing

frequencies and constant gradient. The final rms energy

spread in the new design is 10.5%.
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Figure 2: Schematic of 2 cells of the buncher or rotator

section.

Cooling Section

A novel aspect of this design comes from using the win-

dows on the rf cavity as the cooling absorbers. This is pos-

sible because the near constant β function does not signif-

icantly increase the emittance heating at the window loca-

tion. The window consists of a 1 cm thickness of LiH with

a 75µm layer of Be on the rf cavity field side and, 25µm

layer of Be on the opposite side. (The Be will, in turn, have

a thin coating of TiN to prevent multipactoring). The alter-

nating 2.8 T solenoidal field is produced with one solenoid

per half cell, located between the rf cavities.
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Figure 3: Schematic of one cell of the cooling section. Beta

function is constant ≈ 80 cm. Windows are absorbers.



Simulation Performance: 20 T Solenoid on Tar-

get

Figure 4: Longitudinal phase space at the end of the chan-

nel.

Figure 5: Normalized transverse emittance (left) and longi-

tudinal emittance (right) along the front-end for a momen-

tum cut 0.1 ≤ p ≤ 0.3 GeV/c.

Number of µ/p in A⊥ and AL : Final values are 0.176
with 24 GeV and 0.08 with 8 GeV protons on target.

Table 1: Table of Results.

< pz > Mean Momentum (MeV/c) 220

rms Energy Spread (MeV) 31

ǫN
⊥

(mm-rad) 7.1

ǫequil.

⊥
(mm-rad) 5.5

ǫN
L (mm) 66

A⊥ (mm-rad) 30

AL (mm) 150

No. µ/p in A⊥ and AL 0.08

Simulation Performance: 30 T Solenoid on Tar-

get

We use a MARS generated πs file for an optimized target

system with 8 GeV proton on Hg. The magnetic field on

Target, Capture, Drift is naively scaled by a factor of 3

2
and

the radius of the pipeline is decrease to 25 cm same size as

the Be windows in Buncher and Rotator sections.

Figure 6: Comparison between 20 and 30 T examples:

(top) transverse emittance vs z; (bottom) number of muons

per incident proton on target vs z. Final values: for 20 T is

0.08; for 30 T is 0.11.

Figure 7: (Left) Magnetic field (T) on the total length of the

front end; (Right) magnetic field (T) on the capture region.

In this examples the constant magnetic field on both

bunching and rotator sections was 2.6 T (1.75 × 3

2
). If

we reduce the field to the standard 1.75 T and disre-

gard the lack of matching at the different magnetic field

inter-phases, then



Figure 8: Comparison between 20 and 30 T examples:

(top) transverse emittance vs z; (bottom) number of µs per

incident proton on target vs z. Final values: for 20 T 0.08;

for 30 T 0.10.

Figure 9: (Left) Longitudinal phase space; (Right) trans-

verse phase space of initial πs. The legend on the left panel

it applies also to the right one.

Figure 10: Number of πs on 2.5 MeV/c momentum inter-

vals.

Suggested Conclusions

q New 8 GeV MARS 15 increases the efficiency of the

front-end by ≈ 30%

q For a larger magnetic field on target (20 T =⇒ 30 T ),
the efficiency increases by ≈ 30%.


